132=-16t^2+132t+18

Simple and best practice solution for 132=-16t^2+132t+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 132=-16t^2+132t+18 equation:



132=-16t^2+132t+18
We move all terms to the left:
132-(-16t^2+132t+18)=0
We get rid of parentheses
16t^2-132t-18+132=0
We add all the numbers together, and all the variables
16t^2-132t+114=0
a = 16; b = -132; c = +114;
Δ = b2-4ac
Δ = -1322-4·16·114
Δ = 10128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10128}=\sqrt{16*633}=\sqrt{16}*\sqrt{633}=4\sqrt{633}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-4\sqrt{633}}{2*16}=\frac{132-4\sqrt{633}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+4\sqrt{633}}{2*16}=\frac{132+4\sqrt{633}}{32} $

See similar equations:

| 10c+15c+20c=180 | | -1=-3+p/3 | | (2x+5.5)=34 | | 9^10x=81^25 | | 9a2+16=0 | | -2+x=‐x+2 | | 2(1.5)=4y | | 5m-10+2m=32 | | −8m+4=28 | | 11/9x-1/9=7x | | -3p-4=p+2 | | 4/5(15-6y)-7=-11 | | 48b-185=2000 | | 9a216=0 | | 68=4j | | 12s+16s+68=180 | | 8=7x/14 | | 10.3=−2.5x+1.8 | | 3x+1=2x+3;5x | | 4+2m=m+1 | | 8×+5=5x+14 | | x-8.3=4 | | 2c+31+47=180 | | 12+4.5z=12 | | -2+x=x+7 | | 1.3(c–4)=2.6+0.7c | | -2(3x+1)-2x=-4(2x)-4. | | 1+k=10+4k | | 135+1-100+6x=12x-12 | | -2(x-2)=3(x+3) | | d/3-4=35 | | T=10n+25 |

Equations solver categories